ASHRAE/ IESNA Standard 90.1

Future 90.1 Economic Analysis Methods

Joseph J. Deringer, AIA Principal, The Deringer Group, Inc. Berkeley, CA

ASHRAE Summer Meeting Nashville, TN - 28 June 2004

Current Status

- Envelope
- Lighting
- HVAC
- ECB

Objectives (from Envelope perspective)

- Improve accuracy
- Increase stringency
- Better address special cases
- Better address quality & design issues

A 4 Phase Optimization Program

- Long Range Program
 - Toward High performance buildings (even zeroenergy buildings)
 - Toward integration with environmental rating systems (e.g. green building rating system)
- Envelope focus
 - Get one's own house in order 1st
 - But would welcome broader application

The 4 Phases

- 1. Refine Current Optimization Method
- 2. Refine underlying analysis methods
- Add Advanced technologies
- 4. Advanced optimization methods

Ph. 1 – Refine Current EA Method

- Objective: to obtain @ "20%" savings in energy use from envelope.
- Refinements:
 - a. New 8 zones / old 26 zones
 - b. Economic variables
 - Costs national vs. regional
 - d. Envelope Impacts on HVAC
 - e. Update fen. costs / options
 - f. Quality & Design Issues

Ph. 1a - New 8 zones / old 26 zones

- New addendum approved to go from 26 to 8 climate zones
- Can compare impacts of sets of zones

Ph. 1b - Impacts of changing "scalar"

- Examining impacts on envelope criteria from systematic changes in economic objects
- Scalar 8 to 24

Ph. 1c - National & Regional Costs

- Fuel & Construction Costs
- National Fuel costs have been used for 90.1-1999 / 2001
 - A blended cost of gas and electric
- We are exploring impacts of using regional costs
 - Preliminary analyses uses multipliers on national average costs
 - Fuel multipliers derived from the Tariff Analysis Project (TAP)
 - Construction cost multipliers derived from collected data.
 - So far have used simplified zones to apply multipliers

Ph. 1d – Envelope Impacts on HVAC Sizing Costs **Fenestration SCL Values**

Includes:

- All previous analyses ignored envelope impacts on HVAC sizing.
- Current analysis accounts for incremental differences in HVAC cost due to sizing impacts
- Preliminary analysis using **CLTD** method

SCL_Fen_ZoneA_24												
SCL, Zone Type A, 24 deg pg. 8.34												
Glass Face	8	9	10	11	12	13	14	15	16	17		
N	36	36	38	40	42	42	40	38	39	43		
E	177	180	154	107	68	54	46	40	33	25		
S	23	30	35	40	43	43	40	37	32	24		
W	23	30	35	39	41	67	116	160	186	184		
SCL_Fen_Zo	neA_	36										
SCL, Zone Type A, 36 deg pg. 8.35												
Glass Face	8	9	10	11	12	13	14	15	16	17		
Glass Face N	8 28	9 32	10 36	11 39	12	13 41	14 39	15 36	16 32	17 33		
										_		
N	28	32	36	39	40	41	39	36	32	33		
N E	28 184	32 182	36 155	39 107	40 67	41 54	39 45	36 39	32 33	33 26		
N E S	28 184 24	32 182 36	36 155 53	39 107 70	40 67 80	41 54 79	39 45 68	36 39 52	32 33 38	33 26 29		
N E S	28 184 24 24	32 182 36 30	36 155 53	39 107 70	40 67 80	41 54 79	39 45 68	36 39 52	32 33 38	33 26 29		
N E S W	28 184 24 24 24	32 182 36 30 40	36 155 53 35	39 107 70 38	40 67 80	41 54 79 66	39 45 68	36 39 52 159	32 33 38	33 26 29		
N E S W	28 184 24 24 24	32 182 36 30 40	36 155 53 35	39 107 70 38	40 67 80 40	41 54 79 66	39 45 68 115	36 39 52 159	32 33 38	33 26 29		
N E S W SCL_Fen_Zol	28 184 24 24 24 meA_	32 182 36 30 40 Zone	36 155 53 35	39 107 70 38 e A, 4	40 67 80 40	41 54 79 66	39 45 68 115	36 39 52 159	32 33 38 188	33 26 29 191		

SCL, Zone Type A, 48 deg pg. 8.36

SCL Fen ZoneA 48

Glass Face

(Zone Type A)

97 96 84 63 42 31

24 30 35 38 40 65 114 158 187 192

31 34 37 38 38 37 35 31

8 9 10 11 12 13 14 15 16

188 182 153 104 65 51 43 38 58 90 116 <mark>130</mark> 130 116 88 24 30 34 36 38 64 112 156 186 **193**

Ph. 1d – Envelope Impacts on HVAC Sizing Costs (cont.)

Includes:

- Some exploration of using RTS method
- This is not completed

Ph. 1e – Update Fenestration Costs

- All construction costs are from 1990s.
- Knew important fenestration cost changes had occurred
- Analysis of costs in 2003
- Major reductions in cost of selective low-e

		Technical Data						Costs		
ID Number	Frame/Glass Construction	Vertical U-Factor	Skylight, with Curb, Glass, U-Factor	Skylight, w/o Curb, All, U-Factor	SHGC	VLT	VLT/ SHGC	1999 Initial Cost (\$/sf)	2003 Initial Cost (\$/sf)	1999 cost less 2003 cost
1106	Mtl/HptMpr	1.26	1.58	1.36	0.40	0.38	0.95	\$3.61	\$99.00	(\$95.39)
2170	Mtl/ClrSue-Std-ClrSue	0.57	0.82	0.68	0.40	0.55	1.38	\$7.83	\$99.00	(\$91.17)
2313	Brk/Hpt-Std-Clr	0.62	0.85	0.70	0.40	0.54	1.35	\$7.31	\$7.22	\$0.09
2317	Brk/ClrSbe-Std-Clr	0.48	0.73	0.58	0.40	0.45	1.13	\$8.32	\$7.22	\$1.11
2332	Brk/Grn-Std-ClrSpe	0.48	0.73	0.58	0.40	0.55	1.38	\$8.83	\$7.22	\$1.61
2413	Brk/Hpt-Ins-Clr	0.59	0.81	0.67	0.40	0.54	1.35	\$8.35	\$7.71	\$0.64
2417	Brk/ClrSbe-Ins-Clr	0.44	0.69	0.55	0.40	0.45	1.13	\$9.36	\$7.71	\$1.65
2432	Brk/Grn-Ins-ClrSpe	0.44	0.69	0.55	0.40	0.55	1.38	\$9.87	\$7.71	\$2.16

Ph. 1f - Quality / Design Issues

- Examples being considered
 - Minimum VLT
 - Tinted glazing impacts of constraining or eliminating from optimization
 - Tinted glass not used in SP-102 SHGC results
 - External shading (projection factors)
 - Frames impacts of constraining or eliminating certain frame types from optimization

Ph. 2 – Refine underlying analysis methods

- Underlying Energy analysis methodology is about 10 years old
- Does not incorporate recent techical advances
- Need to re-do the underlying energy analysis
- Use latest tools, methods, technologies, e.g.,
 - Energy Plus
 - GenOpt
 - Consider replacing regression equations with direct optimization using multiple simulation runs

Ph. 2 – Refinements being considered (part 1)

- 1. Improve weighting factors
- 2. Angle-dependent SHGC to replace old SC
- 3. Combined analysis of U and SHGC
- 4. Climate-dependent external shading credit
- 5. Refine Daylighting analysis
- 6. Better integration of inter-system impacts
 - Daylighting
 - HVAC sizing
 - Peak load & annual energy

Ph. 3 – Include Advanced technologies

- Will soon be at limit of current technologies
- Add advanced technologies to mix
- Toward High performance buildings
- Toward zero-energy Buildings
- Include more system integration in analysis

Ph. 3 – Include Advanced technologies

Examples

- Advanced envelope with integrated Daylighting
- Active envelopes / shading systems
- Active envelopes / ventilation systems
- Etc.

Ph. 4 – Advanced Optimization Approaches

- Integrate with environmental rating systems
- Vector analyses across multiple factors, e.g.
 - Annual energy
 - Peak
 - Visual and thermal quality
 - Material recycling
- Climate change impacts on buildings
 - E.g. Future Washington DC
 - HDD x (0.6 or 0.7)
 - CDD X (2.0 or 3.0)

Climate Predictions in 25 Cities from GCM Modeling of 4 Climate Change Scenarios

Projected climate changes for 4 CC scenarios defined by the IPCC WG III:

- A1F1 rapid economic and population growth, fossil intensive energy sources, CO₂ concentration 970 ppm
- A2 continuous population growth, but fragmented economic growth, CO₂ concentration 830 ppm
- population peaks in mid-21st century, economic change towards service and information technologies and use of clean and resource-efficient technologies, CO₂ conc. 550 ppm
- local solutions to economic, social and environmental sustainability; internediate population and economic development, CO_2 concentration 600 ppm

reference on scenarios: Intergovernmental Panel on Climate Change, 2000. source of climate prediction data: Dru Crawley, US DOE, 2004. source of slide: Joe Huang, LBNL, 2004

Cooling Degree Days 18C for 7 Selected Cities under four IPCC Scenarios

Future Economic Analysis Methods for Standard 90.1

Q&A

ASHRAE Summer Meeting Nashville, TN - 28 June 2004